Planck's Constant Kit Objective: Determination of Planck's constant using light emitting diodes (LED's) by observing the 'reverse photo-electric effect'. Theory: If a bias voltage is passed across the LED, which is equal or greater than the difference in the energy of the bands, i.e. the barrier potential, then the bands will 'line up' and a current will flow. When current flows, electrons flow from the conduction band of the N type conductor and are forced up into the conduction band of the P type. Since the P type conductor's valance band is lacking in electrons and we are overpopulating its conduction band with the bias voltage the electrons readily fall into the 'holes' in the valance band of the P type conductor. When they fall, this energy is released in the form of a photon. The energy of the photon emitted can be written as: Where h is Planck’s constant and v is its frequency. The energy of one electron is the charge of an electron (i.e. the current flow of one electron per second in amps) times the voltage. Using this knowledge we then form the equation: where e = 1.6 x 10-19 C (electron charge) We then solve equation (1) for h and replace the E term with the equivalent of E in equation (2), as well as replace with: Where c = 3 x 108 m/sec (speed of light) We then get: or this equation can be rewritten as It is this equation that we will use to determine Planck's constant. The Setup facilitates determination of Planck's Constant (h) by measuring the voltage drop across light-emitting diodes (LEDs) of different colors at a constant current. Current is chosen such that bulk resistance of the LED is neglected. A graph of V vs. λ-1 is plotted and its gradient gives the value of Planck's Constant as per equation (5). Planck’s Constant Kit consists of the following parts: Specially designed variable dc power supply (0 – 5 V) whose output can be varied in steps of 1 mV. Digital dc Micro ammeter (0-999 µA dc), Digital Voltmeter (0 – 9.99V dc), Calibrated LEDs: 4 nos
Objective: Determination of dielectric constant of solids Theory: A dielectric is a material having low electrical conductivity in comparison to that of a metal. It is characterized by its dielectric constant. Dielectric constant is measured as the ratio of the capacitance C of an electrical condenser filled with the dielectric to the capacitance C...
Objective: Determination of dielectric constant of PZT material with Temperature variation and thus determining Curie Temperature. Theory: Ferro-electricity usually disappears above a certain temperature called the transition (or Curie) temperature. Knowledge of the Curie temperature and the variation of the dielectric constant below and above the...
Planck's Constant Kit Objective: Determination of Planck's constant using light emitting diodes (LED's) by observing the 'reverse photo-electric effect'. Theory: If a bias voltage is passed across the LED, which is equal or greater than the difference in the energy of the bands, i.e. the barrier potential, then the bands will 'line up' and a c...
Ultrasonic Interferometer For (Solids) Non-Destructive Testing of Material is an important part of Engineering Education as it gives information without deformation in the shape and size of the material. One of the NDT techniques, Piezoelectric Technique is widely used for the measurement of composition dependent properties such as ultrasonic v...
Ultrasonic Interferometer For Liquids Using this instrument several Ph.D. Thesis are awarded and innumerable Research papers are published in National & International Journals. Velocity measurement combining with other physical quantities provides information of more than 30 Parameters. For ready reference few Equations are listed here. Few Ex...
Nano Fluid Heat Capacity Apparatus The Specific Heat of nanofluids decreases as nanoparticle concentration increases. The specific Heat of nanofluids increases with temperature. Thus future research are required to measure thermophysical properties of different nanofluids as a function of temperature and concentration. Our Nanofluid specific He...
OBJECTIVE 1.Characterization of Nanofluids like Ag/Au & Ferrofluids etc. 2. To evaluate modest nanoparticles concentration in the fluid for significant enhancement of its property. 3. Prediction of enhanced thermal conductivity due to suspension of the metallic nanoparticles with very low concentration in to the polymeric fluids. 4. Sound Veloci...
Nature of Business
Total Number of Employees
Year of Establishment
Annual Turnover
GST / Taxation Identity
PAN
TIN
Our Banker
Export Import License (International Trade Code)
Planck's Constant Kit Objective: Determination of Planck's constant using light emitting diodes (LED's) by observing the 'reverse photo-electric effect'. Theory: If a bias voltage is passed across the LED, which is equal or greater than the difference in the energy of the bands, i.e. the barrier potential, then the bands will 'line up' and a current will flow. When current flows, electrons flow from the conduction band of the N type conductor and are forced up into the conduction band of the P type. Since the P type conductor's valance band is lacking in electrons and we are overpopulating its conduction band with the bias voltage the electrons readily fall into the 'holes' in the valance band of the P type conductor. When they fall, this energy is released in the form of a photon. The energy of the photon emitted can be written as: Where h is Planck’s constant and v is its frequency. The energy of one electron is the charge of an electron (i.e. the current flow of one electron per second in amps) times the voltage. Using this knowledge we then form the equation: where e = 1.6 x 10-19 C (electron charge) We then solve equation (1) for h and replace the E term with the equivalent of E in equation (2), as well as replace with: Where c = 3 x 108 m/sec (speed of light) We then get: or this equation can be rewritten as It is this equation that we will use to determine Planck's constant. The Setup facilitates determination of Planck's Constant (h) by measuring the voltage drop across light-emitting diodes (LEDs) of different colors at a constant current. Current is chosen such that bulk resistance of the LED is neglected. A graph of V vs. λ-1 is plotted and its gradient gives the value of Planck's Constant as per equation (5). Planck’s Constant Kit consists of the following parts: Specially designed variable dc power supply (0 – 5 V) whose output can be varied in steps of 1 mV. Digital dc Micro ammeter (0-999 µA dc), Digital Voltmeter (0 – 9.99V dc), Calibrated LEDs: 4 nos
Objective: Determination of dielectric constant of...
Know MoreObjective: Determination of dielectric constant of...
Know MorePlanck's Constant Kit Objective: Determination...
Know MoreUltrasonic Interferometer For (Solids) Non-Des...
Know MoreUltrasonic Interferometer For Liquids Using th...
Know MoreNano Fluid Heat Capacity Apparatus The Specifi...
Know MoreOBJECTIVE 1.Characterization of Nanofluids like Ag...
Know MoreNew Delhi, India
Lorem ipsum dolor sit, adipisicing elit repudiandae perferendis dolores praesentium nulla quibusdam repellendus. consequatur minus aliquam corrupti blanditiis, necessitatibus consectetur modi ipsum natus accusantium sit pariatur.
Know MoreLorem ipsum dolor sit, adipisicing elit repudiandae perferendis dolores praesentium nulla quibusdam repellendus. consequatur minus aliquam corrupti blanditiis, necessitatibus consectetur modi ipsum natus accusantium sit pariatur.
Know Moreregister with EnquiryGate Network
2151/T-7C, New Patel Nagar, Delhi, 110008 India, New Delhi, India
for better response, write to us, will revert you at the earliest